当前位置 > 散户吧 > 财经要闻 > 爆了!分析师、基金经理疯狂涌入!“马英九将赴大陆”!热搜也爆了:张兰家族信托被击穿!

爆了!分析师、基金经理疯狂涌入!“马英九将赴大陆”!热搜也爆了:张兰家族信托被击穿!

发布时间:2023-03-20 17:31来源:全球财经散户吧字号:

  机构路演,挤爆了。券商分析师基金经理都在听。 本文来自散户吧WWW.SANHUBA.COM

  人工智能会议被挤爆了 本文来自散户吧WWW.SANHUBA.COM

  19日晚间,圈内最大的事件,就是大家都在听AI的电话会会议,直接把app干爆了,投资者涌入进门财经券商路演直播间,一度导致进门财经APP宕机。据了解,进门财经定位是专业投资机构的路演工具,一般是券商、公募、私募、资管、保险等等机构的人用。可以想象,现在的市场热点全在CHATGPT概念板块上。

本文来自散户吧WWW.SANHUBA.COM

  

今晚,爆了!分析师、基金经理疯狂涌入!“马英九将赴大陆”!热搜也爆了:张兰家族信托被击穿!

本文来自散户吧WWW.SANHUBA.COM

本文来自散户吧WWW.SANHUBA.COM

  民生证券还请来了360红衣教主的周鸿祎。据说参会人数超过千人! 本文来自散户吧WWW.SANHUBA.COM

  

今晚,爆了!分析师、基金经理疯狂涌入!“马英九将赴大陆”!热搜也爆了:张兰家族信托被击穿!

本文来自散户吧WWW.SANHUBA.COM

本文来自散户吧WWW.SANHUBA.COM

  泰勒找来了这场路演纪要。其中第三个问题把泰勒笑喷了,有人问周鸿祎,以后小孩长大了应该会学什么专业吗?周回答:这个问题很奇怪,该学什么专业学什么专业啊 本文来自散户吧WWW.SANHUBA.COM

  Q:上游哪些场景很关键?<?XML:NAMESPACE PREFIX = "O" /> 本文来自散户吧WWW.SANHUBA.COM

  A:算力不是最关键的问题,场景和数据是关键。我们二线队伍,账上200多亿人民币,之前国家搞了很多超算中心,没事情干,现在发现配了GPU就有东西看。Transformer算法是谷歌发明的,实现靠的是大力出奇迹,几千亿参数。这是个工程问题。从1到n中国能做的很快,openai中国做的很快,谷歌和meta会很尴尬。Meta开源了他的大语言模型,技术的knowhow会快速传播。关键的东西,第一是数据,有知识量的数据做训练,聊天的语料不包括知识chatgpt中文语料占了不到5%,大量知识在外文期刊里面,只用中文训练语料是不够的。很多机构说用了很大的参数,但是不敢拿出来说,大概率是数据不够。还需要人类的枪花反馈学习和调优,激发GPT理解人类的查询意图,这个是问题的关键。还有个很重要的是场景,微软放弃了自己的小娜的研究,全力帮助AI,在场景化上可以让大家看到人工智能有什么场景。搜索引擎一直在做NLP,自然语言处理,大家都在跟踪使用,搜索引擎在获取海量数据(行情603138,诊股)方面优势。我们和百度抓取的网页在千亿万亿的规模,需要清洗辣鸡网页进行工程化的索引。我们搜索引擎要抓取英文的维基百科和语料,对于我们是现成的。初创公司可能会卡在工程化的初始阶段,这个对工程化的要求比较高。还有人工标注的调优,微软做了很多贡献,搜索引擎帮助很大。360搜索份额占比30%,百度占比60%。微软帮助openai占据了很多的场景,下一步可能会把teams(视频会议)等TO B的场景做结合。

本文来自散户吧WWW.SANHUBA.COM

  Q:以后会不会很多行业不存在了,机器把人替代了?

本文来自散户吧WWW.SANHUBA.COM

  A:我不是很认同。我认为这是个洗牌的机会,如果你不重视他,抓上这班车就不行。我们企业内部要起每个部门都用AI提升我们的能力,用AI的大语言模型赋能,这样会成为我们手里有力的竞争武器。GPT4的知识能力和考试的能力已经超越了每一个地球人,GPT可能是用3.5和4互相训练。我们也考虑过这种,用bert这种理解性的模型进行反馈和奖励。这是个生产力工具,是能给各个产业赋能的,关键是你需要找到相应的场景和场景化的能力。 本文来自散户吧WWW.SANHUBA.COM

  Q:以后小孩长大了应该会学什么专业吗?

本文来自散户吧WWW.SANHUBA.COM

  A:这个问题很奇怪,该学什么专业学什么专业啊,对prompt很敏感。

本文来自散户吧WWW.SANHUBA.COM

  Q:关于我们360,行业现在是巨头扎堆,360的核心优势? 本文来自散户吧WWW.SANHUBA.COM

  A:第一个问题已经讲了,第一是数据的能力,不能光用中文的数据,要有全球数据的抓取能力,要能做到对垃圾的判别和清洗。用户上亿次搜索的数据,我们和百度有知识问答的栏目,这种涉及用户的真实的使用场景来进行训练。数据我们有优势。GPT2和bert是开源的,真要做到上千亿上万亿的模型,几千张GPU的显卡,几个T的数据进行几个亿的训练,这个对工程化要求很高。第三,搜索引擎我们市场份额是百度的一半。搜索引擎不具备生成性,不会编出林黛玉倒拔垂杨柳的故事,生成式AI会无中生有,如果编的结果是不对的普通人很难验证就很麻烦。我们做泛化,泛化的知识图谱的搜索,前面的十条二十条结果给大语言模型做提炼,这样就不会让生成式AI无中生有。我们搜索引擎dau有一个亿,大语言模型可以做及时的翻译和推荐,我们这种场景可以很好的让用户体验到人工智能的场景,形成商业化的闭环。我在政协叫了个提案,大家忽视的是这个东西真正的破圈了。之前无论是阿尔法狗和蛋白质折叠,离生活比较远。得益于微软工程化产品化的能力。一方面要打造核心技术,全方位最大化的调用公司的资源。大模型的方向已经出来了,要做到大力出奇迹,500亿到1000亿的参数训练,用有质量的语料。谷歌现在很尴尬,模型做出来了商业化的场景可能也被微软抢完了。微软专注场景和产品化的结合,openai专注技术,这样能实现很好的效果。

本文来自散户吧WWW.SANHUBA.COM

  Q:360的场景和应用? 本文来自散户吧WWW.SANHUBA.COM

(小编:财神)

专家一览机构一览行业一览